Chào mừng quý vị đến với .
Quý vị chưa đăng nhập hoặc chưa đăng ký làm thành viên, vì vậy chưa thể tải được các tư liệu của Thư viện về máy tính của mình.
Nếu chưa đăng ký, hãy đăng ký thành viên tại đây hoặc xem phim hướng dẫn tại đây
Nếu đã đăng ký rồi, quý vị có thể đăng nhập ở ngay ô bên phải.
Đề thi tuyển sinh vào 10 môn toán - 2013(và đáp án gợi
ý)

- 0 / 0
(Tài liệu chưa được thẩm định)
Nguồn: SGD&ĐT Hà Nội
Người gửi: Vũ Hồng Anh (trang riêng)
Ngày gửi: 00h:14' 24-06-2013
Dung lượng: 192.5 KB
Số lượt tải: 804
Nguồn: SGD&ĐT Hà Nội
Người gửi: Vũ Hồng Anh (trang riêng)
Ngày gửi: 00h:14' 24-06-2013
Dung lượng: 192.5 KB
Số lượt tải: 804
Số lượt thích:
0 người
SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH LỚP 10 THPT HÀ NỘI Năm học: 2013 – 2014
ĐỀ CHÍNH THỨC MÔN: TOÁN
Thời gian làm bài: 120 phút
Bài I (2,0 điểm)
Với x > 0, cho hai biểu thức và .
1) Tính giá trị của biểu thức A khi x = 64.
2) Rút gọn biểu thức B.
3) Tìm x để .
Bài II (2,0 điểm) Giải bài toán bằng cách lập phương trình:
Quãng đường từ A đến B dài 90 km. Một người đi xe máy từ A đến B. Khi đến B, người đó nghỉ 30 phút rồi quay trở về A với vận tốc lớn hơn vận tốc lúc đi là 9 km/h. Thời gian kể từ lúc bắt đầu đi từ A đến lúc trở về đến A là 5 giờ. Tính vận tốc xe máy lúc đi từ A đến B.
Bài III (2,0 điểm)
1) Giải hệ phương trình:
2) Cho parabol (P) : y = x2 và đường thẳng (d) : y = mx ( m2 + m +1.
a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho .
Bài IV (3,5 điểm)
Cho đường tròn (O) và điểm A nằm bên ngoài (O). Kẻ hai tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB < AC, d không đi qua tâm O).
1) Chứng minh tứ giác AMON nội tiếp.
2) Chứng minh AN2 = AB.AC.
Tính độ dài đoạn thẳng BC khi AB = 4 cm, AN = 6 cm.
3) Gọi I là trung điểm của BC. Đường thẳng NI cắt đường tròn (O) tại điểm thứ hai T. Chứng minh MT // AC.
4) Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở K. Chứng minh K thuộc một đường thẳng cố định khi d thay đổi và thỏa mãn điều kiện đề bài.
Bài V (0,5 điểm)
Với a, b, c là các số dương thỏa mãn điều kiện a + b + c + ab + bc + ca = 6abc, chứng minh:
BÀI GIẢI
Bài I: (2,0 điểm)
1) Với x = 64 ta có
2)
3)
Với x > 0 ta có :
Bài II: (2,0 điểm)
Đặt x (km/h) là vận tốc đi từ A đến B, vậy vận tốc đi từ B đến A là (km/h)
Do giả thiết ta có:
(vì x > 0)
Bài III: (2,0 điểm)
1) Hệ phương trình tương đương với:
2)
a) Với m = 1 ta có phương trình hoành độ giao điểm của (P) và (d) là
(Do a – b + c = 0)
Ta có y (-1)=; y(3) =. Vậy tọa độ giao điểm A và B là (-1;) và (3;)
b) Phươnh trình hoành độ giao điểm của (P) và (d) là
(*)
Để (d) cắt (P) tại 2 điểm phân biệt , thì phương trình (*) phải có 2 nghiệm phân biệt. Khi đó
Khi m > -1 ta có
Cách giải khác: Khi m > -1 ta có
Do đó, yêu cầu bài toán
Bài IV (3,5 điểm)
1/ Xét tứ giác AMON có hai góc đối
nên là tứ giác nội tiếp
2/ Hai tam giác ABM và AMC đồng dạng
nên ta có AB. AC = AM2 = AN2 = 62 = 36
3/ (cùng chắn cung MN trong đường tròn (O)), và
(do 3 điểm N, I, M cùng nằm trên đường tròn đường kính AO và cùng chắn cung 900)
Vậy nên MT // AC do có hai góc so le bằng nhau.
4/ Xét có AI vuông góc với KO. Hạ OQ vuông góc với AK. Gọi H là giao điểm của OQ và AI thì H là trực tâm của , nên KMH vuông góc với AO.
ĐỀ CHÍNH THỨC MÔN: TOÁN
Thời gian làm bài: 120 phút
Bài I (2,0 điểm)
Với x > 0, cho hai biểu thức và .
1) Tính giá trị của biểu thức A khi x = 64.
2) Rút gọn biểu thức B.
3) Tìm x để .
Bài II (2,0 điểm) Giải bài toán bằng cách lập phương trình:
Quãng đường từ A đến B dài 90 km. Một người đi xe máy từ A đến B. Khi đến B, người đó nghỉ 30 phút rồi quay trở về A với vận tốc lớn hơn vận tốc lúc đi là 9 km/h. Thời gian kể từ lúc bắt đầu đi từ A đến lúc trở về đến A là 5 giờ. Tính vận tốc xe máy lúc đi từ A đến B.
Bài III (2,0 điểm)
1) Giải hệ phương trình:
2) Cho parabol (P) : y = x2 và đường thẳng (d) : y = mx ( m2 + m +1.
a) Với m = 1, xác định tọa độ các giao điểm A, B của (d) và (P).
b) Tìm các giá trị của m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho .
Bài IV (3,5 điểm)
Cho đường tròn (O) và điểm A nằm bên ngoài (O). Kẻ hai tiếp tuyến AM, AN với đường tròn (O) (M, N là các tiếp điểm). Một đường thẳng d đi qua A cắt đường tròn (O) tại hai điểm B và C (AB < AC, d không đi qua tâm O).
1) Chứng minh tứ giác AMON nội tiếp.
2) Chứng minh AN2 = AB.AC.
Tính độ dài đoạn thẳng BC khi AB = 4 cm, AN = 6 cm.
3) Gọi I là trung điểm của BC. Đường thẳng NI cắt đường tròn (O) tại điểm thứ hai T. Chứng minh MT // AC.
4) Hai tiếp tuyến của đường tròn (O) tại B và C cắt nhau ở K. Chứng minh K thuộc một đường thẳng cố định khi d thay đổi và thỏa mãn điều kiện đề bài.
Bài V (0,5 điểm)
Với a, b, c là các số dương thỏa mãn điều kiện a + b + c + ab + bc + ca = 6abc, chứng minh:
BÀI GIẢI
Bài I: (2,0 điểm)
1) Với x = 64 ta có
2)
3)
Với x > 0 ta có :
Bài II: (2,0 điểm)
Đặt x (km/h) là vận tốc đi từ A đến B, vậy vận tốc đi từ B đến A là (km/h)
Do giả thiết ta có:
(vì x > 0)
Bài III: (2,0 điểm)
1) Hệ phương trình tương đương với:
2)
a) Với m = 1 ta có phương trình hoành độ giao điểm của (P) và (d) là
(Do a – b + c = 0)
Ta có y (-1)=; y(3) =. Vậy tọa độ giao điểm A và B là (-1;) và (3;)
b) Phươnh trình hoành độ giao điểm của (P) và (d) là
(*)
Để (d) cắt (P) tại 2 điểm phân biệt , thì phương trình (*) phải có 2 nghiệm phân biệt. Khi đó
Khi m > -1 ta có
Cách giải khác: Khi m > -1 ta có
Do đó, yêu cầu bài toán
Bài IV (3,5 điểm)
1/ Xét tứ giác AMON có hai góc đối
nên là tứ giác nội tiếp
2/ Hai tam giác ABM và AMC đồng dạng
nên ta có AB. AC = AM2 = AN2 = 62 = 36
3/ (cùng chắn cung MN trong đường tròn (O)), và
(do 3 điểm N, I, M cùng nằm trên đường tròn đường kính AO và cùng chắn cung 900)
Vậy nên MT // AC do có hai góc so le bằng nhau.
4/ Xét có AI vuông góc với KO. Hạ OQ vuông góc với AK. Gọi H là giao điểm của OQ và AI thì H là trực tâm của , nên KMH vuông góc với AO.